ANSYS Based FEM Analysis for Three and Four Coil Active Magnetic Bearing-a Comparative Study

نویسندگان

  • Pabitra Kumar Biswas
  • Subrata Banerjee
چکیده

The active magnetic bearing (AMB) is an integral part of the industrial rotational machine. The paper deals with simulation study of three and four coil AMB utilizing Finite Element Method (FEM). This paper also presents how ANSYS software (Ver. 12.1) can be used to perform the magnetic field analysis in the AMB. This work reports ANSYS simulation for two different structure of AMB that uses three and four attraction type magnets placed in 120 and 90 degree apart from each and other respectively. Three and four attractive magnets give an unstable static force, decreasing with greater distance, and increasing at close distances between electromagnet (stator) and rotor. The nonlinear solution of the magnetic vector potential is determined by using the 2-D finite element method. The force is calculated by Maxwell’s stress tensor method. The electromagnetic field distribution and density analysis allow verifying the designed AMB and the influence of the shaft and coil current changes on the bearing parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System

H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...

متن کامل

3-D RF Coil Design Considerations for MRI

High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...

متن کامل

Analysis of U-I and U-U Type Rail and Actuator Used in Electromagnetic Levitation System Using FEM Software

Electromagnetic levitated and guided system is commonly used in the field of people transport, tool machines frictionless bearing and conveyor system. In the case of low speed people transport vehicles, the electromagnetic levitation offers the advantage of a very salient motion and of a reduced maintenance of the rail.In this work FEM based analysis and design of different structure of rail (g...

متن کامل

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

Static Coil Design Considerations for the Magnetic Resonance Imaging

One of the main challenges in developing magnetic resonance imaging (MRI) systems is to create a static coil that needs to generate magnetic field density along with the characteristics of optimal homogeneity and magnitude size. To do this, two N42 Block PMs are used and the iron core is designed and optimized in accordance with the dimensions of PM pieces using ANSYS Maxwell software. Then, al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013